Comparing Intuitive Physics Engine and ConvNets on Physical Scene Understanding

Renqiao Zhang*

Jiajun Wu*

Chengkai Zhang

Bill Freeman

Josh Tenenbaum

CogSci 2016

(* equal contributions)

Understanding Physical Events

Video from Facebook AI blog post

Motivation

Observations:

- Humans can understand physical events very quickly
- They can also transfer the knowledge to other tasks

Goal: a proper computational model for this process **Models:**

- a intuitive physics engine (IPE)
- a convolutional neural net (CNN)

Stimuli

The classic tower block scenario

Stimuli in Battaglia et al. (2013)

Stimuli in Lerer et al. (2016)

Our Stimuli

- Battaglia, Hamrick, Tenenbaum. PNAS, 2013.
- Lerer, Gross, Fergus. ICML, 2016.

Battaglia, Hamrick, Tenenbaum. PNAS, 2013

IPE: Simulation

Battaglia, Hamrick, Tenenbaum. PNAS, 2013

Convolutional Networks

- LeNet: smaller, 2 convs and 2 linear layers
- AlexNet: widely used, 5 convs and 3 linear layers
- AlexNet pretrained on ImageNet

Observation: Asymmetry

Method	Stable	Unstable	All
Human	38.0	92.9	65.5
IPE	40.7	99.0	70.3
LeNet (200K)	91.3	89.0	90.1
AlexNet (200K)	91.5	92.3	91.9
AlexNet (Pretrained, 200K)	94.5	94.7	94.6

Accuracies (%) of humans, IPE, LeNet, and AlexNet

Observations:

- Networks have better overall performance.
- There is an asymmetry in human accuracies.
- The IPE can model the asymmetry, but not the CNNs.

Size of Training Set

Accuracies (%) of networks with different sizes of training data

Observations:

- Networks achieves human-like accuracies with 1K images.
- AlexNet performs better, but only with enough data.
- Pretrained networks suffer less from the lack of data.

Accuracy with Limited Training Data

Method	Stable	Unstable	All
Human	38.0	92.9	65.5
IPE	40.7	99.0	70.3
LeNet (200K)	91.3	89.0	90.1
AlexNet (200K)	91.5	92.3	91.9
AlexNet (Pretrained, 200K)	94.5	94.7	94.6
LeNet (1,000)	68.0	69.3	68.7
AlexNet (1,000)	71.8	70.1	70.9
AlexNet (Pretrained, 1,000)	72.5	74.2	73.4

Accuracies (%) of humans, IPE, LeNet, and AlexNet

Still, only the IPE can model the asymmetry, not the CNNs.

Correlation with Human Responses

Correlations between human and model responses (p for Pearson's coefficients)

Both models correlate with human responses reasonably well.

Visual Instability

Stable images may have different visual instability. How would models perform in these cases?

Observation: Both human and the IPE perform worse as visual instability increases, but not CNNs.

Generalization

Can models generalize to images with a different number of blocks?

Model Trainin		Test Set			
hibdel	Intuining	3	4	5	Avg
LeNet (200K) AlexNet (200K) AlexNet (P, 200K)	4 4 4	50.5 52.5 51.0	88.5 89.5 95.0	64.0 65.5 78.5	67.7 69.2 74.8
LeNet (1,000) AlexNet (1,000) AlexNet (P, 1,000)	4 4 4	57.0 54.0 55.0	64.0 62.0 71.0	66.0 64.5 72.0	62.3 60.2 66.0
$\begin{array}{c} \text{IPE} (0.1, 10x) \\ \text{Human} \end{array}$	N/A N/A	72.0 76.5	64.0 68.5	56.0 59.0	64.0 68.0

Data

Results

Observation: Both human and the IPE perform worse as the number of blocks increases, but not CNNs.